热力学(thermodynamics)是从宏观角度研究物质的热运动性质及其规律的学科。属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。热力学描述数量非常多的微观粒子的平均行为,其定律可以用统计力学推导而得。
热力学并不追究由大量微观粒子组成的物质的微观结构,热力学主要是从能量转化的观点来研究物质的热性质。它满足于用少数几个能直接感受和可观测的宏观状态量诸如温度、压强、体积、浓度等描述和确定系统所处的状态。通过对实践中热现象的大量观测和实验发现,宏观状态量的变化是互相制约的。制约关系除与物质的性质有关外,还必须遵循一些对任何物质都适用的基本的热学规律,如热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律 等。
热力学可以总结为四条定律:
热力学第零定律定义了温度这一物理量,指出了相互接触的两个系统,热流的方向。
热力学第一定律指出内能这一物理量的存在,并且与系统整体运动的动能和系统与与环境相互作用的势能是不同的,区分出热与功的转换。
热力学第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系统通过热力学过程向外界最多可以做多少热力学功。
热力学第三定律认为,不可能透过有限过程使系统冷却到绝对零度。
1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”,公认能量守恒 、而且能的形式可以互换的热力学第一定律为客观的自然规律。
热力学第一定律:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。即热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。其推广和本质就是著名的能量守恒定律。
1824年,法国人S.卡诺提出著名的卡诺定理(说明热机的最大热效率只和其高温热源和低温热源的温度有关),指明工作在给定温度范围的热机所能达到的效率极限。1848年,英国工程师开尔文(即W.汤姆森)根据卡诺定理制定了热力学温标。1850年和1851年,德国的R.克劳修斯和开尔文先后提出了热力学第二定律,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,也叫熵增原理。
1912年能斯特引出一个结论:不可能使一个物体通过有限数目的手续冷却到绝对零度。这就是著名的绝对零度不可达原理。即热力学第三定律。
Was this helpful?
0 / 0